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Introduction

VIt requires medical doctors and
Injury biomechanical engineers
work together to mitigate/control
this pandemic.



Introduction

v Mec
sopl
cure the c

v'"While injury biomr al engineers
explore injury mechanisms and develop
advanced safety technologies to
prevent the head from injury through
engineering designs.



Introduction

Injury BICMECHaMGel
postulatea tnestneECRIE
v Transl
v'Rotational acc heory.

v Combined Translational and Rotational
Accelerations.
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Introduction

v'For s s have
INCESS: at can
be used to acy of safety
technologies it eering design .

v'One of the tools is Head Injury Criterion
or HIC for short.

v'HIC has been adopted internationally as
a safety regulation for vehicle design.



Introduction

d Injury Criterion is defined by:

HIC = (t, ~t)[— jtza(t)olt]max

where,

a is the resultant acceleration at the center of gravity of the head in g;
t, and t, is the time window in seconds.

HIC = 1000 was originally specified in FMVSS208



HIC is derived fr
Wayne State Head
Tolerance Curve that
that the head can withsta

higher acceleration for short _

duration; and lower
acceleration for longer
duration. Any acceleration
exposure above the curve Is
Injurious.

When the Wayne State curve
Is plotted in a logarithmic
paper, it becomes a straight
line with a -2.5 slope.

This slope was used as an
exponent by Gadd to develop
Gadd Severity Index (GSI):

Head Injury Curves

Average head acceleration (G’s)

4 6
Durations (ms)

GSI = [ a**dt

Where a = instantaneous acceleration of the head
T = duration of the acceleration pulse



The biomecha
connotation of
iIndicates that whe
percentile head Is subj
HIC value of 1000 it may still
have a 16% of probability to
sustain a mild head injury
during impact.

Head injury criteria associated
with other crash dummies
within the Hybrid 1l dummy
family (95, 5t 3, 6, 10 years-
old dummies) were scaled
from that of the 50" percentile
dummy for the Injury
Assessment Reference Values
(IARVs) which were derived by
scaling methods.
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Head injury risk based on HIC

*Courtesy: Prasad and Mertz (1985)



Introduction

v Some critici HIC as being fundamentally
wrong (Newman, 1980).

v"An angular acceleration criterion was
needed (Mackay and Petrucelli, 1989).

v Other believed that in frontal impact, HIC

appeared to work well (Backaitis et al,
1981).



Introduction

v HIC ght
dire
safer th
1986).

v The formulations ¢ 1d HIC are plausible
and fundamentally correct (Lockett, 1985).

v Despite its controversy, HIC is a widely accepted
Injury criterion for head protection in sports and
vehicle safety design.

v The validity of the scaling techniques used to
derive the IARVs for other dummies has not been
proved.
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ement Analysis of Human Heac
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Head injury tolerance curves derived using FE human head models



te Element Analysis of Human Head Imp
ditions

Impact Contact Shear Shear Peak Angular 15 36
condition force stress strain accel. accel. ms ms
HIC HIC
(kN) (kPa) (mm/mm) (G’s) (rad/s?)
Airbag 2.7 7 0.065 73 2,400 553 912
contact
No contact 0.0 11 0.08 76 2,700 665 919

Soft contact .85 12 0.095 86 3,700 663 910

Med-hard 1.9 15 0.11 127 19,500 1543 1548
contact
Semi-rigid 3.8 22 0.13 175 15,500 2359 2359
contact

HIC is generally proportional to impact forces, brain pressures, maximum shear strains,
maximum tensile strains, and even angular head accelerations in a direct impact situation.
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Dependence of intracranial pressure on head size under the same HIC value.

(deformable skull)
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Dependence of maximum principal strain and maximum shear stress on head
size under the same HIC value. (deformable skull)
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Maximum principal strain
contours following different
head size under the same HIC
value (deformable skull):

(a) 5th percentile head model
(b) 50th percentile model
(c) 95th percentile mode
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Maximum shear stress
contours following different
head size under the same HIC
value. (deformable skull):

(a) 5th percentile head model
(b) 50th percentile model

(c) 95th percentile model
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Comparison of intracranial pressure between scaled models and realistic
models under the same HIC value. (deformable skull). The left side is the
pressure in smaller heads. The right side is the pressure in larger heads
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Comparison of maximum principal strain and maximum shear stress between
scaled models between scaled models and realistic models under the same HIC

value. (deformable skull). The left side is the pressure in smaller heads. The
right side is the pressure in larger heads
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Dependence of intracranial pressure on head size during the same acceleration
pulse. (rigid skull)
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Dependence of maximum principal strain and maximum shear stress on head
size during the same acceleration pulse. (rigid skull)
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Maximum principal strain
contours following different
head size under the same HIC
value (rigid skull):

(a) 5th percentile head model
(b) 50th percentile model

(c) 95th percentile mode
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Maximum shear stress
contours following different
head size under the same HIC

value (rigid skull):
(a) 5th percentile head model
(b) 50th percentile model
(c) 95th percentile model
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Scaling Factor A

Comparison of intracranial pressure between scaled models and realistic models during
the same acceleration pulse. (rigid skull) The left side is the pressure in smaller heads. The
right side is the pressure in larger heads
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pulse. (rigid skull). The left side is the pressure in smaller heads. The right side is the
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Intr

20232 39003 0.024

Deformable 276.742 -78.871 0.031
255.197 -84.824 0.045
128.545 -163.837 0.016

Rigid 163.403 -153.974 0.039

O W P O N

174.292 -143.336 0.059

Defmltlon
of skull

els.

MSS
(kPa)
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Defmltlon
of skull

Deformable

Rigid
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0.932 283.984 -67.536
1.057 270.347  -81.252
1.136 285.404  -41.129
0.880 157.701 -126.132
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1.057 172.183 -161.987
1.136 142.124 -201.561

S
()

0.061
0.034
0.029
0.024
0.037
0.031
0.042

0.022

MSS
(kPa)

2.747
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lntroduction to BriC

v One
does

the rotatio f the head
while rational acc ation causes more

harm to the brain than translational
acceleration.

v Therefore, Brain Injury Criterion or BrIC
was proposed (Takhounts et al, 2013).
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BriC is determined from maximum head rotational velocity components
Maximum determination is independent of time

The weighting factors are not equal for the three components

Causes of the three components are different, and might be in conflict



-~ HICvs. BriC
all®

Expression Form Math Formula Math Formula

Injury Translational Rotational
Mechanisms Direct Impact Indirect Impact
Contact Non-contact

Biomech. Basis® Deformable Skull  Rigid Skull

Cause of Injury  Skull bending Brain strains
Brain pressures

Injury Types Focal/Diffused Diffused

Injury Skull Fracture Concussion

Assessments Concussion Sub-  DAI

dura Hematoma



Remarks on BriC

have Jnitude
and dure '

acceleratior
responses.

» Since rotation is always one
component of head motion in the real
world, higher rotational head
acceleration will result in higher
resultant head acceleration



Remarks on BriC

» Rota -
mecha y, BriC
may be ina |
assessment in all kind of impact cases.

» In general, the peak values of
biodynamic parameters such as force,
acceleration and displacement are not
good indicators for assessing human
body tissue dysfunction, their
durations are also counted.



Conclusions

»HIC ion,
and It \ Iry in
automotive design for
sports.

»HIC behaviors differently from a deformable
skull and a rigid one.

» Scaling laws used in biomechanical injury
reference value calculation are not accurate
enough and their usage could be limited.



Conclusions

»The efficacy of BriC may need to be more
thoroughly evaluated before it can be used as a
design tool in vehicle safety design.

»Finite element modeling of human head could
be a more comprehensive tool In engineering
safety design.
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