

International Symposium on Future Mobility Safety Science and Technology

The importance of soft tissue modelling for analysing future seating positions with FE HBMs

Steffen Peldschus, Dustin Draper, Felicitas Lanzl, Julia Muehlbauer Biomechanics + Accident Analysis Institute of Legal Medicine Ludwig Maximilian University Munich

Pilsen, 17 October 2019

Vision

- Multiple Studies have shown that in the context of highly automated vehicles, passengers and drivers expect to be able to sit in new configurations [1] [2]
- One position of particular interest, both for the customer as well as for the safety engineer is the reclined position [3]
- Automated Driving Systems 2.0: A Vision for Safety

Section 1: Voluntary Guidance, Subsection 8: Crashworthiness

"In addition to the seating configurations evaluated in current standards, entities are encouraged to evaluate and consider additional countermeasures that will protect all occupants in any **alternative planned seating** or interior configurations during use.²³"

23) The tools to demonstrate such due care need not be limited to physical testing but also could include virtual tests with vehicle and **human body models.** [4]

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Background

- Hardware tests were performed with both Hybrid III 50th Percentile Male dummy (H350) and the THOR 50th percentile dummy in a concept reclined seating position in a sled environment
- Sled test environment with a USNCAP pulse
- Integrated seat belt, load limiter between the seat and the sled

Huf et al. 2018, Draper et al. 2019

Human body model simulation – Comparison to dummy

• The HBM spine develops a curvature during the pulse event, whereas the dummy lumbar spines remain straight

Draper et al. 2019

LUDWIG-

MAXIMILIANS UNIVERSITÄT MÜNCHEN

Lumbar spine positioning

- A sensitivity study was made only varying lumbar spine position:
- Differences in the kinematic response can clearly be seen
 - Difference in the location of buckling
 - Difference in the timing of buckling
 - Difference in the timing of axial loading transitioning into flexion

Basis Position

Kyphotic Position

Draper et al. 2019

Iterative multimodal approach

condition A (baseline)

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

How does condition affect

 lumbar intervertebral disk displacement peak lumbar and pelvis force

Conclusion:

- Baseline pulse scaled down by ~20 %
- Removal of footrest for condition C

Condition B: backrest 60°

Submarining

- Multi-model analysis of reclined position
- Smaller seat cushion angle
- Multiple pre-tensioning
- GHBMC-S

GHBMC-D

Gepner, Draper et al. 2019

Submarining

- Lap belt positioning
- Same procedures enforced

Gepner, Draper et al. 2019

Soft tissue geometry

- Human anatomy variance
- Model adaption

OSCCAR Project

PROJECT PARTNERS

AUSTRIA

- KOMPETENZZENTRUM DAS VIRTUELLE FAHRZEUG, FORSCHUNGS GMBH
- TECHNISCHE UNIVERSITÄT GRAZ

BELGIUM

- SIEMENS INDUSTRY SOFTWARE NV
- TOYOTA MOTOR EUROPE

CHINA

- TSINGHUA UNIVERSITY
- CHINA AUTOMOTIVE TECHNOLOGY AND RESEARCH CENTER

FRANCE

- ESI GROUP
- UNIVERSITE DE STRASBOURG

GERMANY

- BUNDESANSTALT FUER STRASSENWESEN
- ROBERT BOSCH GMBH
- DAIMLER AG
- LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
 RHEINISCH-WESTFAELISCHE TECHNISCHE
- HOCHSCHULE AACHEN
 UNIVERSITAET STUTTGART

 ZF GROUP, PASSIVE SAFETY SYSTEMS, TRW AUTOMOTIVE GMBH

NETHERLANDS

SIEMENS DIGITAL INDUSTRIES SOFTWARE

SPAIN

IDIADA AUTOMOTIVE TECHNOLOGY SA

SWEDEN

- AUTOLIV DEVELOPMENT AB
- CHALMERS TEKNISKA HOEGSKOLA AB
- VOLVO PERSONVAGNAR AB

PROJECT FACTS

PROJECT COORDINATOR: WERNER LEITGEB

INSTITUTION: VIRTUAL VEHICLE RESEARCH CENTER

EMAIL: OSCCAR@V2C2.AT

WEBSITE: WWW.OSCCARPROJECT.EU

START: JUNE 2018 DURATION: 36 months

PARTICIPATING ORGANISATIONS: 21

Follow us on Twitter https://twitter.com/OsccarProject

Become OSCCAR member on LinkedIn https://www.linkedin.com/groups/13655575/

OSCCAR has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768947.

WWW.OSCCARPROJECT.EU

PROJECT

Future relevant accident scenarios for automated vehicles □Consideration of mixed traffic influence □Intersection Scenarios □Highway Scenarios

- Selected occupant UseCases for future sitting positions
 - □User studies on future sitting position preferences performed at **RWTH** Aachen
 - $\Box 1^{st}$ physical test series for future sitting positions performed at BAST
 - □Restraint principles for new sitting positions under investigation

- Advances in human body modelling (HBM):
 - □Injury criteria development and harmonization
 - □Active HBMs for pre-crash assessment
 - □Tissue, fat and muscle modelling
 - □Advances in omnidirectional biofidelity

Workshop on "Virtual Testing and Open Source Human Body Modelling" @ IRCOBI 2019

http://www.ircobi.org/wordpress/downloads/VIRTUAL-OSCCAR-workshop-20190329.pdf

□International cooperations and exchange planned with

- VIRTUAL Project
- TRC ADS Safety project
- Euro NCAP
- NHTSA & IIHS

Fully Integrated Assessment Tool Chain

Harmonization of Virtual Testing

- Continuous virtual assessment of advanced protection principles
 - □ Using diverse HBM occupants
 - □ Common assessment methodology
 - □ Considering accident scenario, pre-chrash & incrash phases

- Requirements for virtual testing and harmonization
 - □ Harmonization of virtual testing procedures
 - Demonstration homologation scenario in development

- Kent table top experiments
- GHBM, Version 4.3

"FLESH"

less than 15% of thorax depth

Validation - Example

Body region	Pelvis
Level	Full Scale
Load case	Lateral sled
	Leport et al. (2007):
References	Assessment of the pubic force as a pelvic injury criterion in
	side impact. SAE Technical Paper, no. 2007-22-0019

E.L.

derel

THUMS User Community

PORSCHE

Autoliv

Core Partners

DAIMLER

Coordinator

TOYOTA

Associated Partners

Development Partners

LUDWIG-

MAXIMILIANS UNIVERSITÄT MÜNCHEN

TUC Validation Repository

- > Database with FE models of validation setups of state-of-the-art load cases for validating HBMs
- > Precise documentation for a consistent application when evaluating HBMs
- Experimental data / validation parameters provided by institutions where testing was conducted
- > Available in different crash codes (Abaqus, LS-Dyna, Radioss, VPS)
- > Numerical check by Development Partners (DYNAmore, ESI)

www.tuc-project.org/validation-repository

TUC Validation Repository

Available in three crash codes: \geq

LUDWIG-

MAXIMILIANS UNIVERSITÄT MÜNCHEN

- Isolated Rib under Lateral Loading Ο
- Experiments published by Del Pozo et al. (2011) Ο
- Validation Setup developed in cooperation with University of Virginia (UVa) Ο
- Experimental data / corridors provided by UVa 0

BIOMECHANICS

Del Pozo et al. (2011) Toczynski et al. (2016)

www.tuc-project.org/validation-repository

TUC Validation Repository

Work in progress

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Frontal sled using a generic test rig
- Experiments conducted within SENIORS EU project
- Experimental data published by Francisco J. Lopez-Valdes
- Validation Setup developed in cooperation with SENIORS

Lopez-Valdez et al. (2017)

www.tuc-project.org/validation-repository

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Validation

P. La

Thank you for your attention!

Contact: steffen.peldschus@med.lmu.de