Digital Human Body Modeling: A Priority to Address Future Vehicle Safety Challenges

Saeed D. Barbat, Ph.D., FSAE, FASME

Executive Technical Leader for Safety, Policy and Vehicle Analytical Tool Ford Motor Company

The 2nd International Symposium on Future Mobility Safety Science and Technology

Pilsen, Czech Republic, October 17-18, 2019

Outlines

- Motor Vehicle Crashes Statistics and Fatality Trends

- Demographic and Physiology Trend
 - » Aging and Elderly Population Growth
 - » Obesity Growth
- Safety Regulatory and NCAP Ratings Trends
- Emerging Technologies Trends and User Experience Challenges
- Human Body Modeling Motivation
- Examples of Automotive Application and Potential Use (Elderly, Obesity, Brain Injury Criteria, Risk Curves Development, AV etc.)

Leading Causes of Death, All Age Groups in 2016

- The World Health Organization (WHO) reported 1.25M traffic fatalities in 2013, it was estimated the Ninth leading cause of death across all age groups globally.
- Traffic fatalities have increased to 1.35 million in 2106. Estimated the **Eights** leading cause of death across all age groups globally.

Rank	Cause	% of total deaths	
	All Causes		
1	Ischaemic heart disease	16.6	
2	Stroke	10.2	
3	Chronic obstructive pulmonary disease	5.4	
4	Lower respiratory infections	5.2	
5	Alzheimer's disease and other dementias	3.5	
6	Trachea, bronchus, lung cancers	3.0	
7	Diabetes mellitus	2.8	
8	Road traffic injuries	2.5	
9	Diarrhoeal diseases	2.4	
10	Tuberculosis	2.3	

2016 WHO Global Health Estimates

- Road traffic injury is the leading cause of death for people aged 5 29, in 2016.
- Some reasons for this trend: demographics, rapid urbanization, poor safety standards, lack of enforcement, distracted or fatigued driving, others under the influence of drugs or alcohol, speeding, failure to wear seat-belts or helmets.

World Health Organization

Leading Causes of Death, All Age Groups in 2016

• Between the year 2000-2016, the rate of death relative to the size of the worlds population has stabilized and declined relative to the number of motor vehicle in recent years (0.85 Bil – 2.1 Bil)

- While this does not suggest that problem is not worsening, the world is far from achieving the 50% target reduction in the number of deaths by half by 2020.
- The data shows that the progress has not occurred at a pace fast enough to compensate for rapid population growth and increasing motorization

Global Status Report on Road Safety WHO 2015

1950 - 2015 US Traffic Fatalities by Calendar Year

- Year-over-year increases in traffic fatalities often occur during periods of economic recovery
- Fatality rates continue to trend downward (attributed to vehicle design improvements, public domain testing and regulations (But Increased In 2015, 2016, and 2017)
- OEMs are poised to contribute more with introduction of DAT, CAT, and AD
- These new technologies will not eliminate crashes all together and the need to mitigate injuries and reduce fatalities in the remaining crashes is still needed
- Safer Driver/Road User Behaviors, Infrastructure Improvements and Vehicle Safety Enhancements Will Continue Drive Traffic Safety Improvements

Sources: Traffic Safety Facts 2015 Annual Report, NHTSA

Highway Statistics Summary to 1995, FHWA, fi200.xls; Traffic Safety Facts 2010 (DOT HS 811659), 2011 Motor Vehicle Crashes Overview (DOT HS 811701), NHTSA Road Safety in the United States: Are the (Relatively) Good Times Over?, UMTRI-2012-26, September 2012

2017 U.S. Safety Facts and Restraint (Belts & Bags) Use

- Although the U.S. safety belt wearing rate has generally been increasing, it remains lower than Australia, Canada & many countries in Europe (e.g., Germany, UK)
- Belt use up from 83.1% in 2008 to 90.1% in 2016 then drops to 89.6% in 2018 (NOPUS 17)60%
- Incremental increase is difficult to achieve
- Vehicle based technological (e.g. SBAS) have the potential to increase belt usage rates

2015 Front Seat Belt Wearing Rate (BWR)

Sources: US- Seat Belt Use in 2014(NHTSA, DOT HS 812 113); IRTAD Road Safety Annual Report 2016

National Seat Belt Use Rate and Daytime Percentage of Unrestrained Passenger Vehicle Occupant Fatalities

Source: NOPUS and FARS

- Countries with Belt Wearing Rates higher than the US have had long-standing, very aggressive public education and law enforcement efforts
- Current demographic trends (obesity, elderly, law enforcement officers) may contribute to low BWR
- Ford continues to support increased safety belt usage through the development and use of Digital Human Body Model to help develop advanced safety belts

Outlines

- Motor Vehicle Crashes Statistics and Fatality Trends
 - Demographic and Physiology Trend
 - » Aging and Elderly Population Growth
 - » Obesity Growth
- Safety Regulatory and NCAP Ratings Trends
- Emerging Technologies Trends and User Experience Challenges
- Human Body Modeling Motivation
- Examples of Automotive Application and Potential Use (Elderly, Obesity, Brain Injury Criteria, Risk Curves Development, AV etc.)

Changing Age and Gender Population Distribution: In 2030, the U.S. will have more equal numbers of all age groups

- Older age groups are projected to be the fastest growing segment of the US population.
- The increasing number of older occupants presents continued challenges for restraint system design and absence of evaluation tools to balance customer safety, comfort, and convenience.

2017 IIHS Study on Elderly Fatalities in Motor Vehicle Crashes Based on FARS

- There were almost 42 million licensed drivers age 65 and older in 2016 in the US, which is a 56% increase from 1999
- The elderly occupants are more vulnerable to get seriously injured or die in a motor vehicle crash. This is largely due to chest injuries associated with low bones density
- A total of 4,974 people ages 70 and older died in motor vehicle crashes in 2017
- This is 15% fewer than in 1997, when deaths peaked, but a 32% increase since 1975
- The rate of fatalities per capita among older people has decreased 44% since 1975.
- Seventy-five percent of people 70 and older killed in motor vehicle crashes in 2017 were passenger vehicle occupants, and 16 percent were pedestrians

2017 IIHS Study on Elderly Fatalities in Motor Vehicle Crashes Based on FARS

- In 2017, motor vehicle crash death rates per capita increased among males starting at ages 70-74 and among females gradually beginning at ages 65-69
- Males had substantially higher death rates than females for ages 16 and older.
- Per mile traveled, fatal crash rates increase noticeably starting at age 70-74 and are highest among drivers 85 and older
- Currently no regulations, and no crash dummy to assess performance and restraint
- HBM has potential use in driving dummy design and developing risk curves/injury criterion

Obesity is Increasing Among U.S. Adults

Percent of State Population with BMI* ≥ 30 by Calendar Year

- Body Mass Index (BMI) is the ratio of an adult's weight to height: BMI = W (kg) / [H (m)]²
- Today, Obesity is defined as BMI≥30 based on standing posture. New definition is needed!
- Adult obesity rates exceed 35% in 4 states, 30% in 25 states and are above 20% in all states
- Obese crash dummy is researched and no tools are available to evaluate belt fit on obese Data Source: The STATE of OBESITY (<u>https://stateofobesity.org/</u>)

Rear-seat frontal impact sled tests

Source: 2019 G/I meeting (University of Virginia Center for Applied Biomechanics)

Outlines

- Motor Vehicle Crashes Statistics and Fatality Trends
 - Demographic and Physiology Trend
 - » Aging and Elderly Population Growth
 - » Obesity Growth
- Safety Regulatory and NCAP Ratings Trends
- Emerging Technologies Trends and User Experience Challenges
- Human Body Modeling Motivation
- Examples of Automotive Application and Potential Use (Elderly, Obesity, Brain Injury Criteria, Risk Curves Development, AV etc.)

Historical Global Regulatory Overview

History: A Simpler World—North America and Europe

Global Regulatory Overview

Current State: Complex, Expanding Global Framework

The global regulatory framework has shifted from a two-system framework to a more complex regulatory framework dominated by ECE based regulations which can vary by region.

Global Safety Public Domain Organizations

Public domain organizations continue to expand assessment complexity:

- High interest incorporation of Driver Assist and Active Safety technologies
- Focus on 2nd row ratings and new crash dummies/injury criteria (THOR/WSID/Qs/BrIC)
- New crash conditions (e.g. Euro-NCAP MPDB and NHTSA's Oblique Impact)
- As the PD assessments expand, there seems to be a divergence of harmonization

Slide 15

Outlines

- Motor Vehicle Crashes Statistics and Fatality Trends
 - Demographic and Physiology Trend
 - » Aging and Elderly Population Growth
 - » Obesity Growth
- Safety Regulatory and NCAP Ratings Trends
- Emerging Technologies Trends and User Experience Challenges
- Human Body Modeling Motivation
- Examples of Automotive Application and Potential Use (Elderly, Obesity, Brain Injury Criteria, Risk Curves Development, AV etc.)

Motivations for Digital Models for Human Body

- > Human Body Models (HBM), enabled by FEA are deemed necessary to:
 - > Predict tissue level injuries as opposed to forces and displacements using crash dummies
 - Help identify biomechanics issues, injury trends and evaluate restraint performance in nonconventional seating configurations in future autonomous vehicles cabins (Only Tools Today)
 - > Help guide the development of future crash dummies for AV/UX
 - > Current FE HBM can serve as the base for developing Elderly/Obese/children HBMs
 - Vulnerable occupants HBMs can be used to generate risk curves for various body parts to help develop new injury criteria
 - > Can be used for real world accident reconstructions when combined with vehicle models
 - > Potential use in Virtual Certifications in regualtions/puplic domain ratings (Euro_NCAP/BrIC)
 - Injury criteria for children is tentative and is based on old research. Child HBMs can be used to generate risk curves and develop new injury criteria.

Some Limitations of Digital Models for Human Body

- Require more knowledege of material properties of body parts tissue
- Expermental validation of the Human Body Model is cadaver based (lack of muscles, aged, prospensity)
- Responses can only simulate cadavaric tests and not living human
- Child's body is not a miniature adult, scaling of models and injury criteria has limitations
- HBMs results can be FE Code or solver dependent

Outlines

- Motor Vehicle Crashes Statistics and Fatality Trends
 - Demographic and Physiology Trend
 - » Aging and Elderly Population Growth
 - » Obesity Growth
- Safety Regulatory and NCAP Ratings Trends
- Emerging Technologies Trends and User Experience Challenges
- Human Body Modeling Motivation
- Examples of Automotive Application and Potential Use (Elderly, Obesity, Brain Injury Criteria, Risk Curves Development, AV etc.)

Development and Validation of Age-Dependent FE HBMs (35Year, 55 Year and 75 Year Old)

Geometrical Changes with Age

• Kent et al. (2005) reported the following relation between the rib inclinations and age (with the ribs becoming more perpendicular to the spine as age increases): 161 sample; 18y-89y in sagittal plane

Rib Angle (degrees) = **0.0811 Age** (years) + **48.962**

• Stein and Granik (1976) derived the following equation of the change in cortical rib area with age:

Rib Cortical Area $(mm^2) = 32.9 - 0.19$ Age (years)

• Ruff and Hayes (1988) reported a 0.35% annual decrease in the cortical bone thickness of the femur.

Rib Inclinations Using 63 Subjects (Gayzik et al.)

Ninth Rib Angle Changing Function (Kent et al.)

Geometrical Changes

- The following geometrical changes were made to the original FHB model to develop the 35and 75- year old models:
- The rib inclinations were changed following Kent et al. rib angle and age relation.
- The rib cortical shell areas were changed based on Stein and Granik relation.
- The cortical shell thickness of all long bones were changed based on Ruff and Hayes criterion.

Structural Changes

- The following structural changes were made to the original Ford human body model to develop the age-dependent models:
- The modulus of elasticity, UTS, and yield stress of all bones and ribs were changed following Dokko's aging function.
- The same parameters of the skin were changed following Yamada's aging function.
- The bulk moduli of the flesh and intercostal muscles were changed following Yamada's aging function.

Cortical Rib Tension Test (Kemper et al.)

A "Closure Model" via Matched Simulations for Generating Thoracic Risk Curves

Parametric Study on Obesity

Trunk volume would be a better definition of obesity for automotive environment

- Propose new definition for OBESITY based on sitting configuration
- Identify adult Obese population representative Posture and Weight
- To help develop a single adult Obese HBM for restraint evaluation
- To help develop future Obese crash dummy

Selecting an Appropriate Database

NHANES

 The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the and nutritional status of adults and children in the United States and to track changes over time. The results shown are for ~20,000 male subject age 18 and older, 1999-2012

CAESAR

 The Civilian American and European Surface Anthropometry Resource (CAESAR) project was conducted between 1998-2001. Data represented 2,400 *North American* male and female subjects of age 18-65 at 12 Regional Data Collection Sites

Blunt Impact Test Simulations

Human Head/Brain & Neck Models

Fracture Modeling Inputs for a Human Body Model via Inference: *Application for Skull Fracture Potential*

- An FE-based failure model should be validated relative to tests
- involving **post mortem human subjects (PMHS)**.
- However, such validations present challenges because,
 - Local fracture stress and fracture strain are <u>not</u> often measured in PMHS tests, and
 - When test-based fracture data are reported, they often demonstrate considerable variability.
- Yet, in separate analyses, analysts implicitly incorporate variability
- when deriving a "risk curve" a function which relates a predictor variable to an injury probability.

- A four-step process was developed to quantify failure criteria for a human body model:
 - <u>Step 1</u>: A "reference risk curve" was derived from a test-based cadaver dataset involving a specific test setup.
 - <u>Step 2</u>: Models of the test setup were generated, subject to assumed failure criteria, to produce the experimentally-observed spread of the response criteria used for the reference risk curve.
 - <u>Step 3</u>: The model-based outcomes were analyzed subject to the same statistical approach applied in Step 1.
 - <u>Step 4</u>: Iteration was applied on the failure criteria until the model-based risk curve approximated the test-based risk curve (i.e., the reference).

Step 1: Reference Risk Curve

- We considered a PMHS dataset (n=46) developed by Cormier et al. (2011). **PMHS** Details:
 - All test subjects were men.
 - The age range was 41- 94 yrs old, (Average =72 yrs old, std dev = 16).
 - Height and weight were measured for nearly all of the cases.
 - Details such as head circumference were not reported.

Cormier et al. (2011)

Test Details:

- The test involved dynamic loading (speed range = 1.6 - 5.7m/s).
- The head was rigidly supported.
- Contact was to the frontal bone (either left or right aspect) via a rigid impactor.
- Load time history was measured via a load cell, and peak force was estimated.
- Acoustic emission sensors were used to estimate the time of fracture and a corresponding "fracture force."

AVs Regulatory, Flexible Interior Use Cases and Safety Challenges

Lateral

- Applicability of current Safety Standards (FMVSS)
- Development of New AV Safety Standards Biomechanics investigations of flexible seating confi Monitoring occupant behaviors during driving:
 - Dynamic position & posture estimation/tracking
 - Vision Based Driver State Monitor Technologies
- High accuracy in-cabin vision systems
- Sensing technologies for occupant detection and identification
- Innovations in restraint and seats adaptivity
- Cybersecurity and privacy
- Integrated safety technologies
- others

Reclined

Rear-Facing Occupants in Generic AV Environment

Euro_NCAP Electronic Certification for Active Devices in Pedestrian Impact

Digital Certification

Pedestrian Models in EuroNCAP

- What potential pedestrian would be hardest to detect in a strike?
- Where will the head strike?
- Evaluation of active bonnet systems in new cars

Thank You Q?